manjaro安装cuda,cudnn,tensorrt,pytorch,tensorflow

一、安装驱动

1.1 安装NVIDIA驱动

1
2
sudo pacman -S nvidia
nvidia-smi

可以看到

1.2 CUDA cuDnn安装

1
sudo pacman -S cuda cudnn

二、安装 Anaconda

1
sudo pacman -Sy libxau libxi libxss libxtst libxcursor libxcomposite libxdamage libxfixes libxrandr libxrender mesa-libgl  alsa-lib libglvnd

下载软件包 https://www.anaconda.com/products/individual

1
2
3
chmod +x ~/Anaconda3-2021.11-Linux-x86_64.sh
bash Anaconda3-2021.11-Linux-x86_64.sh
anaconda-navigator

关闭

2.1 conda换源

1
2
3
4
5
6
7
vim ~/.condarc
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
ssl_verify: true

2.2 zsh生效 [1]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# added by Anaconda3 5.3.0 installer
# >>> conda init >>>
# !! Contents within this block are managed by 'conda init' !!
__conda_setup="$(CONDA_REPORT_ERRORS=false '/anaconda3/bin/conda' shell.bash hook 2> /dev/null)"
if [ $? -eq 0 ]; then
\eval "$__conda_setup"
else
if [ -f "/anaconda3/etc/profile.d/conda.sh" ]; then
. "/anaconda3/etc/profile.d/conda.sh"
CONDA_CHANGEPS1=false conda activate base
else
\export PATH="/anaconda3/bin:$PATH"
fi
fi
unset __conda_setup
# <<< conda init <<<

添加到 ~/.zshrc

1
2
3
source ~/.zshrc
zsh conda
conda activate base

上述命令会激活名为base的anaconda环境

三、安装pytorch和tensorflow

3.1 pip换源 [2]

1
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

3.2 安装pytorch

1
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

验证pytorch,在python中运行

1
2
import torch
torch.cuda.is_available()

输出 true,就可以使用 cuda 来加速计算了。

3.3 安装tensorflow

1
pip install tensorflow

验证tensorflow,在python中运行

1
2
3
4
import tensorflow as tf
tf.__version__
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
print("Num CPUs Available: ", len(tf.config.experimental.list_physical_devices('CPU')))

输出

1
2
Num GPUs Available:  1
Num CPUs Available: 1
1
2
device_name = tf.test.gpu_device_name()
print('Found GPU at: {}'.format(device_name))

输出

1
Found GPU at: /device:GPU:0

四、安装tensorrt(解决 TF-TRT Warning: Could not find TensorRT)

4.1 安装pycuda

1
2
3
pip install pycuda

yay -S python-onnx python-onnxruntime

4.2 安装tensorrt

参考 [3]

查看tensorflow缺的是哪个版本tensorrt[4]

1
2
sudo pacman -S strace
strace -e open,openat python -c "import tensorflow as tf" 2>&1 | grep "libnvinfer\|TF-TRT"

可以看到

下载对应的tensorrt版本:https://developer.nvidia.com/tensorrt/download

1
2
3
4
5
cd TensorRT-${version}/python

python3 -m pip install tensorrt-*-cp3x-none-linux_x86_64.whl
python3 -m pip install tensorrt_lean-*-cp3x-none-linux_x86_64.whl
python3 -m pip install tensorrt_dispatch-*-cp3x-none-linux_x86_64.whl

如果是10.0版本

1
2
3
cd TensorRT-${version}/onnx_graphsurgeon

python3 -m pip install onnx_graphsurgeon-0.5.0-py2.py3-none-any.whl

将以下信息写入 ~/.bashrc~/.zshrc,重新打开终端或source一下或重启

1
export LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:/home/sun/TensorRT-8.6.1.6/lib"

manjaro安装cuda,cudnn,tensorrt,pytorch,tensorflow
https://mztchaoqun.com.cn/posts/D9_Manjaro_Install_CUDA_CUDNN/
作者
mztchaoqun
发布于
2024年1月10日
许可协议